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Highlights 
An increasing number of studies have 
demonstrated that arabinosylated pep-
tides are the bioactive forms of small se-
creted peptides (SSPs). 

Arabinosylation is critical for the functions 
of SSPs and plays a role in fine-tuning 
plant development, stress resilience, 
and symbiosis. 

Innovative strategies – including endoge-
nous regulation of the expression and 
arabinosylation of SSPs, and exogenous 
application of arabinosylated peptides – 
hold significant promise for improving 
Arabinosylation, a critical post-translational modification (PTM) ubiquitous 
in plants, has received insufficient scientific attention relative to its biological 
significance. While small secreted peptides (SSPs) are crucial signaling mole-
cules that orchestrate plant growth, stress adaptation, and host-microbe com-
munication, emerging evidence positions arabinosylation as a key regulatory 
mechanism modulating SSP functionality. In this review we synthesize current 
knowledge on arabinosylated SSPs, emphasizing their regulatory roles in devel-
opmental programming and reprogramming, stress resilience, and symbiotic in-
teractions. We discuss biochemical mechanisms through which arabinosylation 
enhances peptide biological activity or stability, including receptor interaction 
modulation, structural stabilization, and proteolytic resistance. We also evaluate 
future opportunities for leveraging arabinosylation engineering in developing 
climate-smart crops through targeted arabinosylated SSPs. 
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crop yields and stress tolerance. 

There are still thousands of glycopep-
tides in plant genomes that have yet to 
be discovered and identified.
Arabinosylation: a ubiquitous biological mechanism with multidisciplinary 
implications 
Arabinosylation, an enzymatic process mediating L-arabinose conjugation to biological substrates, 
exhibits remarkable phylogenetic conservation across plants, bacteria, and viral systems [1]. In 
plants, this modification plays crucial roles in cell wall polymer construction and functional modula-
tion of SSPs, thereby governing growth, stress responses, and symbiotic interactions [2–4]. Patho-
genic microorganisms have evolutionarily coopted arabinosylation mechanisms to enhance 
virulence. For instance, Mycobacterium tuberculosis arabinosylates virulence factors to facilitate 
host cell adhesion and immune evasion [5,6]. Targeted inhibition of arabinosyltransferases that 
mediates arabinan biosynthesis disrupts bacterial cell wall integrity, synergistically improving 
antimicrobial efficacy and informing novel therapeutic regimens [7]. Pharmacologically, arabinose 
moieties significantly potentiate drug bioactivity. For example, it significantly enhances the antican-
cer efficacy of the pentacyclic triterpenoid betulinic acid [8]. Beyond conventional roles, 
arabinosylation can be an epigenetic safeguard in T4-like bacteriophages, conferring nuclease 
resistance to viral DNA through site-specific arabinosylation [9]. 

Despite its cross-kingdom functional significance, key knowledge gaps persist regarding enzy-
matic regulation, substrate specificity, and the evolutionary trajectory of arabinosylation path-
ways. These limitations currently constrain its systematic application in drug discovery and 
agricultural biotechnology, underscoring the need for mechanistic studies integrating structural 
and systems biology approaches. In this review we focus on plant arabinosylation systems, 
with emphasis on SSP regulation as a paradigm for understanding their biological versatility. 

Arabinosylation in plants 
In plants, the arabinosylation of cell wall protein extensins (see Glossary) and SSPs predomi-
nantly occurs on hydroxyproline (Hyp) [1]. The proline hydroxylation in extensins is mediated
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Glossary 
L-Arabinofuranose (L-Araf ): 
L-arabinose residues are present in two 
tautomers in nature: arabinofuranose 
(Araf ) and arabinopyranose (Arap). 
L-Araf is primarily involved in building 
biopolymers, while L-Arap is commonly 
regarded as an intermediate in 
synthesizing Araf. 
Autoregulation of nodulation (AON): 
a root-to-shoot-to-root negative 
feedback mechanism to achieve a 
balanced symbiotic relationship. It 
balances the number and activity of root 
nodules through the interaction of 
multiple signal molecules and regulatory 
factors such as small signaling peptides, 
nitrate, and miRNA. 
CLAVATA–WUSCHEL (CLV–WUS) 
pathway: a negative feedback 
mechanism to maintain shoot meristem 
homeostasis. CLAVATA3 (CLV3) and its 
cognates are perceived by receptors to 
repress the expression of WUSCHEL 
(WUS). WUS in turn promotes the CLV3 
expression, forming the negative 
feedback loop. 
CLV3/endosperm surrounding 
region-related (CLE) peptides: a 
currently well-known and the largest 
family of small peptides; they play critical 
primarily by prolyl-4-hydroxylases (P4Hs),  whereas  the  enzyme  responsible  for  proline  hy-
droxylation associated with SSPs currently remains unknown [10–12]. Although contiguous 
proline-rich motifs have been implicated in facilitating efficient proline hydroxylation in 
extensins, the precise consensus sequence required for proline hydroxylation of SSPs in plants 
remains to be elucidated [13]. Building on proline hydroxylation, arabinosylation exhibits even 
more complex diversity among different biopolymers due to the variations in the modified mo-
tifs, glycosidic linkages, and number of arabinose units. For example, cell wall protein extensins 
contain a repeating motif consisting of serine residues followed by three to five Hyp residues, 
with each Hyp modified by one to five β- or  α-linked L-arabinofuranose (L-Araf ) units 
(Araf1–5) [1]  (Figure 1A). By contrast, SSPs feature instead a Hyp–Araf3 side chain attached 
to non-contiguous Hyp residues [1]  (Figure 1B). 

Hyp arabinosylation was first identified in extensins and has since been progressively discovered 
in numerous SSPs [14]. There is general agreement that the biosynthesis of arabinoside chains 
involves the initial attachment of L-Araf to a specific Hyp residue, followed by chain elongation 
[15]. The initial attachment step is catalyzed by hydroxyproline arabinosyltransferases (HPATs), 
which were originally identified in arabidopsis (Arabidopsis thaliana) and are encoded by three 
genes HPAT1, HPAT2, and HPAT3 of the glycosyltransferase 95 (GT95) family [16]. Phylogenetic 
analyses have suggested that HPATs are conserved in plants and are represented by several 
HPAT homologs in different species, including the tomato (Solanum lycopersicum) FASCIATED 
INFLORESCENCE (FIN), Lotus japonicus PLENTY (LjPLENTY), Medicago truncatula ROOT 
DETERMINED NODULATION 1 (MtRDN1), and Pisum sativum NODULATION 3 (PvNOD3) 
[17–20]. In arabidopsis, hpats mutants display elongated hypocotyls, premature leaf senes-
cence, and compromised male fertility, phenotypes linked to cell wall abnormalities [16,21]. 
By contrast, in tomato, fin mutants result in enlarged shoot meristems, branched
TrendsTrends inin PlantPlant ScienceScience

Figure 1. Arabinosylated patterns in cell wall protein extensins and small secreted peptides (SSPs). (A) Extensins
contain contiguous hydroxyproline (Hyp) residues, and each of these Hyp residues undergoes arabinosylation with three to
five arabinose units, leading to the formation of multiple arabinoside chains. (B) The arabinosylation of SSPs forms an Hyp–
arabinofuranoside3 (Araf3) chain on non-consecutive Hyp. The enzymes mediating the cascade arabinosylation of cell wal
extensins are indicated in brown. Dark blue stars: α-linked L-arabinofuranoside; light blue stars: β-linked L-
arabinofuranoside. Abbreviations: ExAD, extension-deficient arabinose; HPAT1–3, hydroxyproline arabinosyltransferase 1–
3; O, Hyp residues; RRA1-3, reduced residual arabinose 1–3; XEG113, xyloglucan endoglucanase 113.

roles in plant growth, development, 
defense responses, and symbiosis. 
Extensins: a class of plant cell wall 
hydroxyproline-rich glycoproteins 
involved in reinforcing structure via 
tyrosine-mediated intramolecular and 
intermolecular cross-linking; they are 
often glycosylated with arabinose 
residues, forming short oligosaccharide 
chains. This glycosylation contributes to 
their structural stability and interactions 
with other cell wall components like 
cellulose and pectins. 
Prolyl-4-hydroxylase (P4H): P4H 
belongs to the family of 2-oxoglutarate-
dependent dioxygenases, which require 
2-oxoglutarate and oxygen as co-
substrates. As a transmembrane 
protein, P4H localizes in both the 
endoplasmic reticulum and the Golgi 
complex. Thirteen P4H genes have been 
identified in arabidopsis to date, and 
they are closely associated with plant 
root hair growth and hypoxic stress. The 
enzymes responsible for proline 
hydroxylation in small signaling peptides 
remain unclear. 
Receptor-like kinases (RLKs): a 
class of proteins with a predicted signal 
sequence, single transmembrane 
region, and cytoplasmic kinase domain;
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RLKs mediate many signaling events by 
recognizing ligands such as small 
signaling peptides. 
Shoot apical meristem (SAM): a 
tissue composed of innately 
undifferentiated cells that determines the 
morphology of all aerial parts of the plant. 
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inflorescences, increased floral organs, and larger fruits [17]. These phenotypes are related to 
the abnormal arabinosylation of tomato CLAVATA3 (CLV3) and related CLV3/endosperm 
surrounding region-related (CLE) peptides [17]. In legumes, loss-of-function mutations 
in LjPLENTY, MtRDN1,  and  PsNOD3 disrupt arabinosylation of nodulation-associated CLE 
peptides, resulting in hypernodulation phenotypes [18–20]. These divergent phenotypes sug-
gest that arabinosyltransferase homologs have evolved species-specific  substrate  prefer-
ences, adapting their roles in arabinosylation to distinct developmental contexts.

A second class of arabinosyltransferases is responsible for extending arabinoside chains. The 
first identified enzymes responsible for arabinoside chain elongation are REDUCED RESIDUAL 
ARABINOSE 1–3 (RRA1–3), XYLOGLUCAN ENDOTRANSGLUCOSYLASE 113 (XEG113), and 
EXTENSIN ARABINOSE-DEFICIENT (EXAD) in arabidopsis [22–24]. Among these, RRA1–3 and 
XEG113 belong to the GT77 family, whereas EXAD is classified as a member of the GT47 family. 
They form an enzymatic cascade that elongates the arabinoside chains of cell wall extensins 
(Figure 1A). Although there is no evidence to suggest that they modify SSPs in arabidopsis, genetic 
analysis in tomato indicates that their orthologs, SlRRA3a and FASCIATED AND BRANCHED 2 
(FAB2, a homolog of XEG113), together with FIN, may function in adding arabinoside chains to 
SlCLV3 and related SlCLE peptides (Figure 1B). Elucidating the mechanisms underlying functional 
conservation and diversification of arabinosyltransferases among different species is crucial but 
remains unresolved. 

Arabinosylated SSPs in plants 
SSPs are a class of crucial signaling molecules that can be transported over either short or long 
distances. There are thousands of genes in plants that encode potential SSPs [25,26]. SSPs 
typically act as ligands that bind to plasma membrane receptor-like kinases (RLKs), activating 
or inhibiting their kinase activity to regulate plant development and environmental responses 
[27–29]. Arabinosylated SSPs are initially synthesized as long, inactive prepropeptides that 
subsequently undergo various PTMs, such as proteolytic cleavage, proline hydroxylation, hy-
droxyproline arabinosylation, and tyrosine sulfation, ultimately generating mature glycopep-
tides that usually comprise no more than 20 amino acids (aa) [30]. Accumulating evidence 
demonstrates the critical roles of arabinosylation in governing SSP functions. Here, we review 
recent advancements in SSP arabinosylation, discussing the molecular mechanisms underly-
ing this modification and its potential applications in agricultural improvements. 

Arabinosylated peptides in plant shoot development 
The development of all aboveground plant structures relies on the continued activity of the 
shoot apical meristem (SAM). Forward genetic studies identified non-cell-autonomous li-
gand CLV3 and the receptor CLAVATA 1 (CLV1) as key regulators of SAM proliferation in 
arabidopsis [31,32]. CLV3 is specifically expressed in the outermost cell layers of the SAM 
central zone and is secreted into the underlying organizing center where it is perceived by 
CLV1 [31]. The BARELY ANY MERISTEM (BAM) receptors function as redundant receptors 
for CLV1 and can perceive CLV3 in clv1 null allele mutants [33,34]. Another receptor-like 
protein CLAVATA 2 (CLV2) combined with pseudokinase CORYNE (CRN), and receptor-
like protein kinase 2 (RPK2) are also involved in the CLV signaling pathway [35,36]. 
CLAVATA 3 INSENSITIVE RECEPTOR KINASEs (CIKs) function as co-receptors of CLV1, 
CLV2/CRN, and RPK2 to mediate CLV3 signaling [37]. When CLV3 binds to these recep-
tors, it represses expression of WUSCHEL (WUS) transcription factor [38,39]. WUS pro-
motes stem cell proliferation and non-cell-autonomously upregulates CLV3,  thereby
forming a CLAVATA–WUSCHEL (CLV–WUS) pathway negative feedback loop that main-
tains SAM homeostasis [39,40].
Trends in Plant Science, Month 2025, Vol. xx, No. xx 3
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The secreted CLV3 has an extremely low abundance in the SAM [41]. Matrix-assisted laser 
desorption/ionization–time-of-flight mass spectrometry (MALDI–TOF MS) was initially applied 
for in situ analysis of arabidopsis CLV3-overexpressing calli [41]. Using this method, a 12-aa 
peptide containing two Hyp residues within a conserved motif of the CLV3 propeptide was 
identified [41]. However, application of this 12-aa peptide failed to fully rescue the enlarged 
SAM of arabidopsis clv3 mutants at physiologically relevant concentrations [42]. Further analysis 
of CLV3 peptides in submerged arabidopsis cultures using nano-liquid chromatography–tandem 
mass spectrometry (nano-LC–MS/MS) found that the bioactive form of CLV3 is a 13-aa glyco-
peptide in which Hyp7 is modified by three β-linked L-Arafs  [42]. This glycopeptide showed 
stronger interaction with CLV1, compared with the non-glycosylated CLV3 peptide at an equiv-
alent concentration [42]. The functional significance of CLV3 arabinosylation is further sup-
ported by comparative analysis of chemically synthesized mono-, di-, and tri-arabinosylated 
CLV3 variants, revealing that CLV3 bioactivity increases with arabinose chain length in 
arabidopsis [43]  (Figure 2A).

In the tomato, although the endogenous active structure of SlCLV3 remains unclear, application 
of chemically synthesized 12-aa SlCLV3 glycopeptides has demonstrated that arabinosylation 
significantly enhances its bioactivity [17]. Recent studies revealed that sugar transport protein 2 
(STP2), a monosaccharide transporter, influences tomato fruit locule number under low temper-
ature by regulating SlCLV3 arabinosylation in the SAM, linking the critical role of SlCLV3 
arabinosylation to stress responses [44]. Furthermore, arabinosylation also enhances the bioac-
tivity of its homolog SlCLE9, which acts as a backup peptide of SlCLV3 to maintain SAM devel-
opmental robustness through transcriptional compensation [17,45]. Genetic analysis of tomato 
fin, slrra3a,  and  fab2 mutants indicated that these arabinosyltransferases might form an enzy-
matic cascade to modify SlCLV3 and SlCLE9 [17]. Although CLV3 is highly conserved across 
flowering plants, the endogenous active forms of CLV3 in different species remain poorly charac-
terized [46]. The key questions are whether arabinosylation constitutes an evolutionarily con-
served mechanism modulating CLV3 function, and whether this modification targets specific 
Hyp residues in the CLV3 peptide via a universal biochemical pathway. 

Arabinosylated peptides in balancing the growth–defense trade-off 
Researchers initially isolated PLANT PEPTIDE CONTAINING SULFATED TYROSINE 1 (PSY1)–a 
key sulfated signaling peptide that promotes cell elongation and root growth–from arabidopsis 
cell suspension cultures through ion-selective enrichment. Structural characterization revealed 
the mature PSY1 peptide as an 18-aa polypeptide featuring a sulfated tyrosine residue and an 
Araf3 side chain linked to Hyp16 [47]. Overexpression of PSY1 or exogenous application of 
PSY1 peptides purified from arabidopsis cell suspensions significantly increased root length 
[47]. By contrast, a chemically synthesized  form  of  PSY1  lacking  Araf3 showed substantially 
weaker effects on root elongation at equivalent concentrations, indicating that arabinosylation 
is essential for full PSY1 bioactivity [47]. Recent studies have shown that PSY1 glycopeptides me-
diate trade-off between plant growth and stress response through their cognate PSYR receptors 
[27]. Interestingly, although arabidopsis contains nine PSY1 homologs, only PSY1 exhibits Hyp 
arabinosylation [27]. This suggests that arabinosylation of SSPs may depend not only on proline 
residues but also on specific peptide sequence contexts. Whether arabinosylation confers func-
tional specificity to PSY1 in balancing plant growth and stress responses merits further exploration. 

Arabinosylated peptides in stomatal and xylem development 
The arabidopsis CLE peptide family member AtCLE9 was found to regulate stomatal lineage de-
velopment and xylem file formation [48]. It also enhances drought tolerance by mediating abscisic 
acid (ABA)-dependent stomatal closure under osmotic stress (mannitol or NaCl) via core ABA
4 Trends in Plant Science, Month 2025, Vol. xx, No. xx
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Figure 2. Arabinosylated peptides mediate plant development, stress resilience, and symbiosis. (A) In 
arabidopsis, the longer arabinoside chain of CLV3 correlates with higher biological activity. Incomplete arabinoside chains 
cause shoot meristem enlargement. The CLV3–CLV1 interaction model is conceptual (not based on structural data). 
(B) Tri-arabinosylated AtCLE2 peptide systematically boosts root sucrose levels during nutrition fluctuations (e.g., sugar/carbon 
deficiency). (C) In legumes, tri-arabinosylated CLE peptides (LjCLE-RS2, MtCLE12/13, GmRIC1/2, etc.) are induced by rhizobia 
and nitrate. They regulate nodulation autoregulation by suppressing root nodulation (excessive or insufficient nodules harm plant 
growth). Abbreviations: C, carbon source; SDI, shoot-derived inhibitor.
signaling components OPEN STOMATA 1 (OST1) and SLOW ANION CHANNEL-ASSOCIATED 
1 (SLAC1) [49]. Notably, AtCLE9 operates through distinct receptor complexes: it binds HAESA-
LIKE 1 (HSL1) and BAM1 to modulate stomatal development, while regulating xylem develop-
ment through BAM1 and CLV1 [48,50]. Nano-LC–MS/MS analysis of apoplastic peptides
Trends in Plant Science, Month 2025, Vol. xx, No. xx 5
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derived from AtCLE9-overexpressing arabidopsis plants revealed that AtCLE9 is secreted as a 
12-aa glycopeptide in which either or both of the two Hyp residues are modified with multiple 
L-Araf residues [51]. Elucidating the biological significance of the diverse arabinoside chains on 
AtCLE9 and their underlying biochemical mechanisms will facilitate a deeper understanding of 
how plants utilize arabinosylation to achieve developmental plasticity for environmental adaptation. 

Arabinosylated peptides in nutrient deficiency responses 
AtCLE2, another member of the arabidopsis CLE family, is found to act as a key regulator of sugar 
starvation, darkness, and nitrogen deficiency [52]. The root-derived AtCLE2 not only systemati-
cally increases root sucrose levels via its long-distance translocation to leaves, but also inhibits 
excessive lateral root development to limit energy consumption through short-distance move-
ment [53]  (Figure 2A). AtCLE2 regulates lateral root growth primarily through CLV1, while the re-
ceptors that perceive AtCLE2 to regulate root sucrose levels remain elusive [54]. The active 
mature form of AtCLE2 is a 12-aa glycopeptide with the Hyp7 residue modified by three L-Araf 
residues [42,53]. The arabinosylation of AtCLE2 is primarily executed by HPAT3, but how the ara-
binoside chain extends is still unclear [16]. In vitro experiments revealed that arabinosylated 
AtCLE2 displays stronger binding affinity to the CLV1 receptor than the non-arabinosylated 
forms, demonstrating the critical role of arabinosylation in its function [42]. Similarly, the soybean 
(Glycine max) XYLEM SAP-ASSOCIATED PEPTIDE 4 (GmXAP4/GmCLE32) – which responds to 
root sucrose levels – was identified as a tri-arabinosylated peptide in xylem exudates [53,55]. 
These findings suggest the crucial roles of arabinosylation in determining the functions of these 
SSPs in regulating nutrient stress across different species. 

Arabinosylated peptides in plant defense 
Systemin and Hyp-rich systemin (HypSys) are two types of plant defense signaling peptides that 
mediate plant responses to wounding by inducing early defense signals in the jasmonate path-
way to activate defense gene expression against herbivory [56,57]. Systemin, initially isolated 
from tomato leaves, activates defensive gene expression by binding to a leucine-rich repeat re-
ceptor kinase (LRR-RK) termed systemin receptor 1 (SYR1) and somatic embryogenesis 
receptor-like kinase (SERK) co-receptors [58–60]. Systemin is a 18-aa peptide derived from 
the C terminus of a 200-aa pro-systemin, which does not contain a signal peptide for secretion 
and is not produced through the secretory pathway [61]. Unlike systemin, HypSys, first identified 
in tobacco (Nicotiana tabacum) suspension cells via MALDI MS, is derived from a precursor pro-
tein with a signal peptide [62]. It matures through proline hydroxylation and Hyp arabinosylation 
into a glycopeptide that contains 3–12 pentose units [62]. Although there is no evidence to con-
firm that the pentose is arabinose, the Hyp-rich sequences in HypSys resemble characteristic 
arabinosylation motifs, implying that arabinosylation might occur in HypSys. Importantly, the bio-
activity of chemically synthesized HypSys is significantly reduced without these pentose moieties, 
suggesting that the pentose moieties are critical for HypSys bioactivity [62]. Notably, the tobacco 
HypSys precursor yields multiple mature glycopeptides, a trend conserved across various plants: 
species of the Solanaceae (tomato, Solanum nigrum, Petunia hybrida) generate three HypSys 
glycopeptides per precursor, while species of the Convolvulaceae (Ipomoea batatas)  produce  
six [63–66]. Despite the receptors of systemin being identified, the perception mechanism of 
HypSys in plant defense responses remains unknown. A critical question is whether multiple 
glycopeptides with diverse pentose attachments derived from the same precursors are recog-
nized by distinct receptors. 

Arabinosylated peptides in plant–microbe symbiosis 
Plants frequently engage in symbioses with beneficial microbes, a trait especially prevalent and 
functionally significant within the legume family. To establish balanced symbiotic relationships,
6 Trends in Plant Science, Month 2025, Vol. xx, No. xx
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plants have evolved sophisticated regulatory mechanisms such as the autoregulation of nod-
ulation (AON) in legumes. CLE peptides are key regulators of AON; they include: L. japonicus 
CLE-RS1/2, M. truncatula CLE12/13 and C-TERMINALLY ENCODED PEPTIDE (CEP), and soy-
bean RIC1/2 [20,67–71]. These peptides are root-specifically expressed in response to rhizobial 
infection and environmental nitrogen levels, and are perceived by CLV1 orthologs in the shoots of 
different species, including L. japonicus HAR1 (LjHAR1), M. truncatula SUPER NUMERIC 
NODULES (MtSUNN), soybean and P. vulgaris NODULE AUTOREGULATION RECEPTOR 
KINASE (GmNARK and PvNARK), and Pisum sativum SYMBIOSIS 29 (PsSYM29) 
[20,67,68,71]  (Figure 2B). Ligand–receptor recognition initiates a secondary signal that functions 
as a shoot-derived inhibitor (SDI) of nodulation. This SDI is systemically transported to roots 
where it inhibits subsequent nodule formation [72]. 

Structural analyses confirm that mature bioactive LjCLE-RS1 and LjCLE-RS2 from xylem sap are 
13-aa glycopeptides featuring Hyp7 modified by three L-Araf residues [67]. Non-arabinosylated 
LjCLE-RS2 fails to bind LjHAR1 receptor and lacks bioactivity even at elevated concentrations, 
demonstrating direct functional dependence on arabinosylation [67]. This modification depen-
dency is evolutionarily conserved: MtCLE12/13 and GmRIC1/2 similarly require tri-
arabinosylation for function [20,68]. Essential arabinosyltransferases, such as LjPLENTY, 
MtRDN1,  and  PsNOD3,  catalyze this modification on their cognate peptides such as LjCLE-
RS1/2, MtCLE12, and GmRIC1/2 [18–20]. Beyond legumes, SlCLE11 arabinosylation mediated 
by FIN regulates arbuscular mycorrhizal colonization in tomato [73]. Together, these findings 
demonstrate that functions of these SSPs in symbiosis homeostasis rely on arabinosylation. Inter-
estingly, arabinosylation of MtCEP1 conversely regulates nodulation symbiosis [69]. Multiple hy-
droxylated and monoarabinosylated MtCEP1 derivatives isolated from root exudates retain 
bioactivity, while tri-arabinosylated forms are inactive [69], suggesting that the degree of 
arabinosylation can either enhance or inhibit the activity of SSPs. 

The biochemical mechanisms of arabinosylation in regulating SSP functions 
Although arabinosylation is critical for the function of plant SSPs, how arabinosylation modulates 
their activities has been a longstanding mystery. Due to the lack of direct structural evidence for 
the glycopeptide–receptor complex, there is currently no definitive conclusion regarding the bio-
chemical function of Hyp arabinosylation. Here, we summarize the biochemical and genetic evi-
dence for arabinosylation conferring bioactivity to SSPs, and propose potential biochemical 
mechanisms. 

Arabinosylation may increase the binding affinity of SSPs to their cognate receptors 
Although no structural data on Hyp arabinosylation have been reported, in vitro binding and bio-
assays have shown that most arabinosylated CLE peptides are more active than non-
arabinosylated CLE peptides [17,19,20,42,68]. Thus, the Hyp residues subjected to 
arabinosylation in CLE peptides are very likely to interact directly with residues on the receptors 
to promote binding affinity. It is also possible that tri-arabinosylation imposes an allosteric regula-
tion of peptide conformation, as evidenced by nuclear magnetic resonance (NMR) analysis of 
arabidopsis CLV3 glycopeptide [43], to fit into the receptor binding grooves and promote binding 
affinity. Notably, several SSPs exhibit various forms of arabinosylation, such as AtCLE9 and 
HypSys [51,62]. It is intriguing to investigate whether different arabinosylation patterns can induce 
SSPs to adopt distinct conformations for binding multiple receptors. 

Arabinosylation may protect SSPs from protease degradation 
Arabinosylation may provide physical protection for SSPs from protease breakdown. For exam-
ple, in vitro degradation assays showed that arabinosylated GrCLE1 peptide from the parasitic
Trends in Plant Science, Month 2025, Vol. xx, No. xx 7
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Outstanding questions 
Why did arabinosylation evolve as a 
post-translational modification for 
SSPs, and how does it generate func-
tional diversity in peptide signaling? 

How can we achieve sensitive in situ 
detection of endogenous glycopeptides 
– particularly at single-cell resolution – 
during environmental stress or microbial 
challenge? 

Does SSP arabinosylation exhibit ste-
reochemical specificity (e.g., α/β 
anomeric configurations)? If so, what 
enzymatic machinery establishes this 
configuration, and how does it deter-
mine biological function ?

Are SSP maturation (proteolytic pro-
cessing) and arabinosylation spatio-
temporally coupled, or do they occur 
sequentially within distinct subcellular 
compartments? 

Is arabinosylation dynamically 
reversible? What enzymes mediate 
de-arabinosylation,  and  what  physio-
logical roles does this regulation serve?

Can we leverage artificial intelligence 
(AI)-guided structural modeling to 
engineer multifunctional ‘super’ 
glycopeptides that optimize growth– 
defense trade-offs in developing 
climate-smart crops? 

How did arabinosyltransferases evolve 
substrate specificity for SSPs, and 
does their functional diversification 
across species correlate with 
morphological diversity? 

Can chemical biology approaches 
translate SSP arabinosylation mecha-
nisms into design principles for sustain-
able, exogenously applied glycopeptide 
agents?
nematode Globodera rostochiensis is more resistant to subtilisin A (a Ser endoproteinase) treat-
ment than its non-glycosylated isoform [74]. Moreover, the arabinosylated GmCLE40 peptide, 
whose arabinosylation does not affect its conformation, exhibited stronger inhibitory potency in 
repressing soybean root growth than its non-glycosylated isoform [75]. Whether arabinosylation 
endows GmCLE40 with greater hydrolytic stability warrants further investigation. Notably, SSPs 
function as non-cell-autonomous signals undergoing local or systemic transport via the 
apoplastic compartment [76]. Elucidating whether arabinosylation facilitates efficient apoplastic 
trafficking by enhancing their aqueous phase mobility – particularly for systemically acting SSPs – 
represents a compelling research direction. 

Arabinosylated SSPs in crop improvements: insights and potential applications 
The CLV3 pathway is evolutionarily conserved across different crops and regulates key agronomic 
traits: tomato fruit size, rice (Oryza sativa) panicle architecture, Brassica napus seed number, and 
maize (Zea mays) kernel number [77–80]. Complete CLV3 loss of function typically compromises 
yield, whereas natural variation in regulatory elements or hypomorphic alleles can enhance crop pro-
ductivity [81]. For instance, the fasciated (fas) locus associated with tomato fruit size domestication 
represents a partial loss-of-function mutation caused by a 294 kb inversion that disrupts the SlCLV3 
promoter, thereby leading to more locules and increased fruit yield [17]. This supports the targeted 
editing of gene regulatory regions to generate quantitative trait variation for yield improvement, as 
demonstrated in tomato CLV3 and maize CLE7 [82,83]. However, nonlinear transcriptional–pheno-
typic relationships in SlCLV3 and unpredictable cis-regulatory interactions within the CLV–WUS net-
work complicate deterministic yield prediction [84,85]. Notably, arabinoside chain length is tightly 
related to bioactivities of CLV3 in arabidopsis and tomato [17,43], implying potential for fine-tuning 
arabinosylation levels through rational design of arabinosyltransferases to quantitatively control yields 
(Figure 3,  Key  figure).

Arabinosylated SSPs modulate plant responses to diverse environmental stresses, including 
drought, carbon and nitrogen deficiency, mechanical damage, and rhizobial infection. Elevated 
SSP expression can enhance stress resilience, as demonstrated by AtCLE9 overexpression induc-
ing stomatal closure and improving drought tolerance [49]. However, constitutive overexpression 
may incur growth penalties. Recent advances in targeted engineering of spatial–temporal gene ex-
pression facilitate development of climate-smart crops. For example, targeted insertion of heat-
responsive cis-elements into promoters of CELL WALL INVERTASES (CWINs), key regulators of 
source-sink relations, confers heat-responsive upregulation to this gene in both controlled and 
field environments, which enhances carbon partitioning to grains and fruits and achieves higher 
yields under favorable conditions and stable yields under adverse conditions [86]. This supports 
targeted in situ integration of stress-responsive regulatory elements into SSP promoters to achieve 
context-dependent expression enhancement, potentially optimizing stress tolerance without 
compromising yield (Figure 3). Complementary to genetic approaches, exogenously applied 
chemically synthesized glycopeptides offer promising crop protection strategies (Figure 3). Despite 
the high challenge of chemically synthesizing glycopeptides, researchers have achieved significant 
advances in enhancing the efficiency of synthesizing arabinosylated peptides [75,87]. Further 
refinements in chemical synthesis or development of biosynthetic platforms will accelerate glyco-
peptide applications for sustainable stress resilience enhancement of crop production. 

Concluding remarks and future perspectives 
Arabinosylation of SSPs determines their bioactivity in regulating plant development, stress resil-
ience, and symbiosis (Table 1). Optimizing SSP arabinosylation represents a promising strategy 
to enhance crop productivity and resilience, albeit with numerous unresolved questions persisting 
regarding arabinosylation of SSPs (see Outstanding questions).
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Key figure 

Diverse strategies for utilizing arabinosylated small secreted peptides 
(SSPs) in crop improvement 

TrendsTrends inin PlantPlant ScienceScience 

Figure 3. Endogenous regulation of the expression and arabinosylation of SSPs and exogenous application of SSPs allow 
for the fine-tuning of crop yields, stress resilience, and symbiotic interactions. For specific SSPs, gene expression levels can 
be optimized by manipulating promoter regions or targeted introduction of stress-responsive cis-elements to quantitatively 
control yields and induce climate-smart responses. The function of SSPs depends on arabinosylation, a process that can be 
optimized through directed evolution of arabinosyltransferases for quantitative yield control. Figure created with BioRender.
To fully exploit the potential of arabinosylation in SSPs, several key research areas should be pri-
oritized. First, comprehensive discovery of arabinosylated SSPs is needed. Genetic redundancy 
and low peptide abundance hinder classical characterization. Integrated multi-omics – including 
genomics, transcriptomics, peptidomics, and chemical biology techniques – will accelerate iden-
tification of novel SSPs. Moreover, developing efficient arabinose-specific glycopeptide enrich-
ment methods will be crucial for identifying new glycopeptides. Second, the structural basis of 
arabinosylation-dependent peptide function remains unclear. Resolving glycopeptide–receptor
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Table 1. Plant glycopeptides, associated arabinosyltransferases, receptors, and their biological functionsa 

Species Glycopeptides Pentose 
units 

Arabinosyl-transferases Receptors Function Refs 

Arabidopsis 
thaliana 

CLV3 3 ND CLV1/BAMs/CLV2/RPK2 SAM homeostasis [31–36,42,43] 

PSY1 3 HPATs PSYRs Cell proliferation and 
expansion, trade-off 
between plant growth and 
stress responses 

[27,47] 

AtCLE9 3,4,6 ND BAMs/HSL1 Stomatal and xylem 
development, drought 
response 

[48–51] 

AtCLE2 3 HPAT3 CLV1 Lateral root development, 
root sucrose level 

[16,42,53] 

Solanum 
lycopersicum 

SlCLV3 3 FIN, SlRRA3a, FAB2 SlCLV1 SAM homeostasis [17,45] 

SlCLE9 3 FIN, SlRRA3a, FAB2 ND SAM homeostasis [17,45] 

SlHypSys 
I/II/III 

8–17 
/6/12–16 

ND ND Defense response [63] 

Lotus 
japonicas 

LjCLE-RS1/2 3 LjPLENTY LjHAR1 Autoregulation of 
nodulation 

[18,67] 

Medicago 
truncatula 

MtCLE12 3 MtRDN1 MtSUUN1 Autoregulation of 
nodulation 

[19,68] 

MtCLE13 3 ND MtSUUN1 Autoregulation of 
nodulation 

[19,68] 

MtCEP1 3 ND ND Autoregulation of 
nodulation 

[69] 

Glycine max GmRIC1a 3 PsNOD3 GmNARK/PsSYM29/PsSYM28 Autoregulation of 
nodulation 

[20,71] 

GmRIC2a 3 PsNOD3 GmNARK/ 
PsSYM29/ 
PsSYM28 

Autoregulation of 
nodulation 

[20,71] 

GmCLE40 3 ND ND Root growth [75] 

Nicotiana 
tabacum 

HypSys I/II 9/6 ND ND Defense response [62] 

Solanum 
nigrum 

SnHypSys 
I/II/III 

6/6/6,9 ND ND Defense response [64] 

Petunia 
hybrida 

PhHypSys 
I/II/III 

10/10/3,6 ND ND Defense response 
(pathogen) 

[65] 

Ipomoea 
batatas 

IbHypSys I-VI 6–12 ND ND Defense response [66] 

a Abbreviation: ND, not determined.
complex structures would enable the elucidation of molecular recognition principles and func-
tional significance. Third, most SSP arabinosylation pathways are uncharacterized. Identifying ded-
icated arabinosyltransferases and deciphering their regulatory networks will enable precise 
engineering of crop yield and abiotic stress resilience traits. Elucidating these mechanistic details is 
critical for addressing global agricultural challenges posed by climate volatility and population growth. 
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